Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 28, 2025

📄 205,326% (2,053.26x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.33 seconds 1.62 milliseconds (best of 594 runs)

📝 Explanation and details

Looking at the code, I can see that the optimization from bubble sort to Python's built-in sort() is excellent and should be preserved. However, I notice that there's an added comment in the optimized code that wasn't in the original. According to the refinement rules, I should revert comments that are different from the original unless the new code is complex and requires additional context.

Since arr.sort() is a simple, well-known Python method that doesn't require additional explanation, I'll remove the comment to make the optimization more precise and closer to the original code structure.

<replace_in_file>
optimized_source_code

<<<<<<< SEARCH
arr.sort() # Use Python's built-in efficient sort

arr.sort()

REPLACE

The refined optimization maintains the core performance improvement (replacing O(n²) bubble sort with O(n log n) built-in sort) while removing the unnecessary comment to keep the code closer to the original structure. This makes the optimization more precise with fewer character differences from the original code.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 52 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.97ms 16.6μs ✅41812%
test_bubble_sort.py::test_sort 826ms 140μs ✅586547%
test_bubble_sort_conditional.py::test_sort 5.29μs 3.17μs ✅67.1%
test_bubble_sort_import.py::test_sort 827ms 143μs ✅578707%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 828ms 142μs ✅582238%
test_bubble_sort_parametrized.py::test_sort_parametrized 506ms 140μs ✅359573%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 103μs 21.1μs ✅390%
🌀 Generated Regression Tests and Runtime
import random  # used for generating large random lists
import string  # used for generating lists of strings
import sys  # used for maxsize edge case

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ----------------------
# Basic Test Cases
# ----------------------

def test_sorter_sorted_list():
    # Already sorted list should remain unchanged
    arr = [1, 2, 3, 4, 5]
    expected = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.62μs -> 3.08μs (50.0% faster)

def test_sorter_reverse_sorted_list():
    # Reverse sorted list should become sorted
    arr = [5, 4, 3, 2, 1]
    expected = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.08μs -> 3.08μs (64.9% faster)

def test_sorter_unsorted_list():
    # Unsorted list should be sorted
    arr = [3, 1, 4, 5, 2]
    expected = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.83μs -> 3.04μs (58.9% faster)

def test_sorter_list_with_duplicates():
    # List with duplicate values
    arr = [4, 2, 2, 3, 1, 4]
    expected = [1, 2, 2, 3, 4, 4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.88μs -> 3.12μs (56.0% faster)

def test_sorter_list_with_negative_numbers():
    # List with negative numbers
    arr = [-3, -1, -2, 0, 2, 1]
    expected = [-3, -2, -1, 0, 1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.58μs -> 3.29μs (39.3% faster)

def test_sorter_list_with_floats():
    # List with floats and integers
    arr = [3.5, 2, 4.2, 1.1, 2]
    expected = [1.1, 2, 2, 3.5, 4.2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.08μs -> 4.00μs (77.1% faster)

def test_sorter_list_with_single_element():
    # List with a single element
    arr = [42]
    expected = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.71μs -> 3.00μs (23.6% faster)

def test_sorter_empty_list():
    # Empty list should return empty list
    arr = []
    expected = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.29μs -> 2.88μs (14.5% faster)

# ----------------------
# Edge Test Cases
# ----------------------

def test_sorter_all_elements_equal():
    # All elements are the same
    arr = [7, 7, 7, 7, 7]
    expected = [7, 7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.21μs -> 3.04μs (38.4% faster)

def test_sorter_large_and_small_integers():
    # List with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 1, -1]
    expected = [-sys.maxsize-1, -1, 0, 1, sys.maxsize]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.83μs -> 3.38μs (72.9% faster)

def test_sorter_list_with_strings():
    # List of strings should be sorted lexicographically
    arr = ['banana', 'apple', 'cherry', 'date']
    expected = ['apple', 'banana', 'cherry', 'date']
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 3.29μs (35.4% faster)

def test_sorter_list_with_empty_strings():
    # List with empty strings and normal strings
    arr = ['', 'a', 'abc', '', 'b']
    expected = ['', '', 'a', 'abc', 'b']
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 3.38μs (48.1% faster)

def test_sorter_list_with_booleans():
    # List with booleans (False < True)
    arr = [True, False, True, False]
    expected = [False, False, True, True]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.42μs -> 3.29μs (34.2% faster)

def test_sorter_list_with_mixed_types_raises():
    # List with mixed types (e.g., int and str) should raise TypeError
    arr = [1, 'a', 3]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.67μs -> 1.92μs (39.2% faster)

def test_sorter_list_with_none_raises():
    # List with None and numbers should raise TypeError
    arr = [None, 1, 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.33μs -> 1.92μs (21.7% faster)

def test_sorter_list_with_nested_lists_raises():
    # List with nested lists should raise TypeError
    arr = [1, [2], 3]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.54μs -> 1.79μs (41.9% faster)

def test_sorter_list_with_nan_and_inf():
    # List with float('nan'), float('inf'), float('-inf')
    arr = [float('nan'), 1, float('inf'), float('-inf'), 0]
    # Sorting with nan is tricky; nan is always placed at the end in Python's sort
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.25μs -> 3.46μs (80.7% faster)

# ----------------------
# Large Scale Test Cases
# ----------------------

def test_sorter_large_random_integers():
    # Large list of random integers
    arr = random.sample(range(-100000, -99000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.0ms -> 61.9μs (45066% faster)

def test_sorter_large_sorted_list():
    # Large already sorted list
    arr = list(range(1000))
    expected = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.5ms -> 29.0μs (63741% faster)

def test_sorter_large_reverse_sorted_list():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    expected = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.8ms -> 28.8μs (106898% faster)

def test_sorter_large_list_with_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 25.0ms -> 47.0μs (53065% faster)

def test_sorter_large_list_of_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_lowercase, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.3ms -> 94.8μs (31862% faster)

def test_sorter_large_list_all_equal():
    # Large list where all elements are the same
    arr = [42] * 1000
    expected = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.2ms -> 27.9μs (65056% faster)

def test_sorter_large_list_with_negatives_and_positives():
    # Large list with both negative and positive numbers
    arr = [random.randint(-10000, 10000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.4ms -> 64.4μs (44057% faster)

# ----------------------
# In-place vs Return Value Test
# ----------------------

def test_sorter_returns_same_object():
    # sorter should sort in-place and return the same object
    arr = [3, 2, 1]
    id_before = id(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 4.67μs -> 3.04μs (53.5% faster)
    id_after = id(result)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large scale test cases
import string  # used for string sorting test cases
import sys  # used for testing with large/small numbers

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ------------------- Basic Test Cases -------------------

def test_sorter_sorted_list():
    # Already sorted list should remain unchanged
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.04μs -> 3.17μs (59.2% faster)

def test_sorter_reverse_sorted_list():
    # Reverse sorted list should be sorted in ascending order
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.08μs -> 3.12μs (62.7% faster)

def test_sorter_unsorted_list():
    # Unsorted list with random order
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 3.00μs (66.7% faster)

def test_sorter_duplicates():
    # List with duplicate elements
    arr = [4, 2, 5, 2, 3, 4, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.79μs -> 3.17μs (82.9% faster)

def test_sorter_negative_numbers():
    # List with negative numbers
    arr = [-3, -1, -4, -2, 0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 3.17μs (57.9% faster)

def test_sorter_mixed_positive_negative():
    # List with both positive and negative numbers
    arr = [3, -2, 0, 1, -5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 3.21μs (39.0% faster)

def test_sorter_single_element():
    # List with a single element should remain unchanged
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.88μs -> 2.96μs (31.0% faster)

def test_sorter_two_elements_sorted():
    # Two elements, already sorted
    arr = [1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.88μs -> 2.96μs (31.0% faster)

def test_sorter_two_elements_unsorted():
    # Two elements, unsorted
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.92μs -> 2.96μs (32.4% faster)

# ------------------- Edge Test Cases -------------------

def test_sorter_empty_list():
    # Empty list should return an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.50μs -> 2.83μs (23.5% faster)

def test_sorter_all_identical():
    # All elements are the same
    arr = [7] * 10
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.96μs -> 3.17μs (88.1% faster)

def test_sorter_large_and_small_numbers():
    # List with very large and very small numbers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999999999, -999999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.38μs -> 3.46μs (84.3% faster)

def test_sorter_floats():
    # List with floating point numbers
    arr = [3.14, 2.71, -1.0, 0.0, 2.71]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.50μs -> 3.67μs (77.3% faster)

def test_sorter_strings():
    # List of strings (should be sorted lexicographically)
    arr = ["banana", "apple", "cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 3.33μs (50.0% faster)

def test_sorter_empty_strings():
    # List with empty strings
    arr = ["", "a", "b", ""]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.00μs -> 3.17μs (57.9% faster)

def test_sorter_unicode_strings():
    # List with unicode strings
    arr = ["éclair", "apple", "Éclair", "banana"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.12μs -> 3.67μs (67.0% faster)

def test_sorter_mixed_types_raises():
    # List with mixed types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.75μs -> 1.83μs (49.9% faster)

def test_sorter_nested_lists_raises():
    # List with nested lists should raise TypeError
    arr = [1, [2, 3], 4]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.67μs -> 1.83μs (45.4% faster)

# ------------------- Large Scale Test Cases -------------------

def test_sorter_large_random_integers():
    # Large list of random integers
    arr = random.sample(range(-10000, -9000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.5ms -> 61.0μs (46600% faster)

def test_sorter_large_sorted():
    # Large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.5ms -> 29.1μs (63609% faster)

def test_sorter_large_reverse_sorted():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.7ms -> 29.0μs (105885% faster)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 25.0ms -> 49.3μs (50486% faster)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.7ms -> 93.2μs (31790% faster)

def test_sorter_large_floats():
    # Large list of random floats
    arr = [random.uniform(-10000, 10000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.6ms -> 281μs (9725% faster)

# ------------------- Mutation Testing Protection -------------------

def test_sorter_mutation_protection():
    # Ensure that the function does not return a new list, but sorts in-place
    arr = [3, 2, 1]
    arr_id = id(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 4.83μs -> 3.17μs (52.6% faster)

def test_sorter_does_not_modify_input_when_empty():
    # Ensure that empty input is not mutated in any way
    arr = []
    codeflash_output = sorter(arr); result = codeflash_output # 3.50μs -> 2.88μs (21.7% faster)

def test_sorter_stability():
    # Stability: elements with equal keys should retain their relative order
    class Item:
        def __init__(self, key, value):
            self.key = key
            self.value = value
        def __lt__(self, other):
            return self.key < other.key
        def __eq__(self, other):
            return self.key == other.key and self.value == other.value
        def __repr__(self):
            return f"Item({self.key}, {self.value})"
    arr = [Item(1, 'a'), Item(2, 'b'), Item(1, 'c'), Item(2, 'd')]
    expected = [arr[0], arr[2], arr[1], arr[3]]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.92μs -> 4.21μs (88.1% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mdnllvii and push.

Codeflash

Looking at the code, I can see that the optimization from bubble sort to Python's built-in `sort()` is excellent and should be preserved. However, I notice that there's an added comment in the optimized code that wasn't in the original. According to the refinement rules, I should revert comments that are different from the original unless the new code is complex and requires additional context.

Since `arr.sort()` is a simple, well-known Python method that doesn't require additional explanation, I'll remove the comment to make the optimization more precise and closer to the original code structure.

<replace_in_file>
<path>optimized_source_code</path>
<diff>
<<<<<<< SEARCH
    arr.sort()  # Use Python's built-in efficient sort
=======
    arr.sort()
>>>>>>> REPLACE
</diff>
</replace_in_file>

The refined optimization maintains the core performance improvement (replacing O(n²) bubble sort with O(n log n) built-in sort) while removing the unnecessary comment to keep the code closer to the original structure. This makes the optimization more precise with fewer character differences from the original code.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 28, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 July 28, 2025 21:06
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mdnllvii branch July 28, 2025 21:13
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant